Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 103, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664368

RESUMO

Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.


Assuntos
Obesidade , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Animais , Humanos , Camundongos , Metabolismo Energético/genética , Glucose/metabolismo , Glucose/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
2.
Nucleic Acids Res ; 52(7): 3823-3836, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421639

RESUMO

Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.


Assuntos
Processamento Alternativo , Sequenciamento de Nucleotídeos em Larga Escala , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Transcriptoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Éxons/genética , Domínios Proteicos
3.
Matrix Biol ; 128: 1-10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378098

RESUMO

The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.


Assuntos
Caderinas , Proteínas de Caenorhabditis elegans , Animais , Tamanho Corporal , Caderinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular , Matriz Extracelular/metabolismo
4.
iScience ; 26(10): 107841, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766984

RESUMO

G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.

6.
Nat Cancer ; 4(9): 1292-1308, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525015

RESUMO

Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.


Assuntos
Interleucina-17 , Melanoma , Humanos , Interleucina-17/genética , Interleucina-17/uso terapêutico , Antígeno CTLA-4/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética
7.
PLoS One ; 18(7): e0281487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418389

RESUMO

Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.


Assuntos
Melanoma , Neoplasias Cutâneas , Telomerase , Humanos , Linfócitos T CD4-Positivos/patologia , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Regiões Promotoras Genéticas , Mutação , Reparo do DNA/genética , Telomerase/genética
8.
Cell Rep ; 42(7): 112679, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37354459

RESUMO

The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.


Assuntos
Glioblastoma , Humanos , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Regulação Alostérica , Ligantes , Sítio Alostérico , Moléculas de Adesão Celular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
9.
Clin Cancer Res ; 29(15): 2894-2907, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199727

RESUMO

PURPOSE: Recent studies have demonstrated HLA class II (HLA-II)-dependent killing of melanoma cells by cytotoxic CD4 T cells. We investigated evolution of HLA-II-loss tumors that escape cytotoxic CD4 T-cell activity and contribute to immunotherapy resistance. EXPERIMENTAL DESIGN: Melanoma cells from longitudinal metastases were studied for constitutive and IFN-inducible HLA-II expression, sensitivity towards autologous CD4 T cells, and immune evasion by HLA-II loss. Clinical significance of HLA-II-low tumors was determined by analysis of transcriptomic data sets from patients with immune checkpoint blockade (ICB). RESULTS: Analysis of longitudinal samples revealed strong intermetastatic heterogeneity in melanoma cell-intrinsic HLA-II expression and subclonal HLA-II loss. Tumor cells from early lesions either constitutively expressed HLA-II, sensitizing to cytotoxic CD4 T cells, or induced HLA-II and gained CD4 T-cell sensitivity in the presence of IFNγ. In contrast, late outgrowing subclones displayed a stable CD4 T-cell-resistant HLA-II-loss phenotype. These cells lacked not only constitutive but also IFNγ-inducible HLA-II due to JAK1/2-STAT1 pathway inactivation. Coevolution of JAK1/2 deficiency and HLA-II loss established melanoma cross-resistance to IFNγ and CD4 T cells, as detected in distinct stage IV metastases. In line with their immune-evasive phenotype, HLA-II-low melanomas showed reduced CD4 T-cell infiltrates and correlated with disease progression under ICB. CONCLUSIONS: Our study links melanoma resistance to CD4 T cells, IFNγ, and ICB at the level of HLA-II, highlighting the significance of tumor cell-intrinsic HLA-II antigen presentation in disease control and calling for strategies to overcome its downregulation for improvement of patient outcome.

10.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37028819

RESUMO

BACKGROUND: Despite the availability of effective systemic therapies, a significant number of advanced melanoma patients develops brain metastases. This study investigated differences in incidence and time to diagnosis of brain metastasis and survival outcomes dependent on the type of first-line therapy. METHODS: Patients with metastatic, non-resectable melanoma (AJCCv8 stage IIIC-V) without brain metastasis at start of first-line therapy (1L-therapy) were identified from the prospective multicenter real-world skin cancer registry ADOREG. Study endpoints were incidence of brain metastasis, brain metastasis-free survival (BMFS), progression-free survival (PFS), and overall survival (OS). RESULTS: Of 1704 patients, 916 were BRAF wild-type (BRAFwt) and 788 were BRAF V600 mutant (BRAFmut). Median follow-up time after start of 1L-therapy was 40.4 months. BRAFwt patients received 1L-therapy with immune checkpoint inhibitors (ICI) against CTLA-4+PD-1 (n=281) or PD-1 (n=544). In BRAFmut patients, 1L-therapy was ICI in 415 patients (CTLA-4+PD-1, n=108; PD-1, n=264), and BRAF+MEK targeted therapy (TT) in 373 patients. After 24 months, 1L-therapy with BRAF+MEK resulted in a higher incidence of brain metastasis compared with PD-1±CTLA-4 (BRAF+MEK, 30.3%; CTLA-4+PD-1, 22.2%; PD-1, 14.0%). In multivariate analysis, BRAFmut patients developed brain metastases earlier on 1L-therapy with BRAF+MEK than with PD-1±CTLA-4 (CTLA-4+PD-1: HR 0.560, 95% CI 0.332 to 0.945, p=0.030; PD-1: HR 0.575, 95% CI 0.372 to 0.888, p=0.013). Type of 1L-therapy, tumor stage, and age were independent prognostic factors for BMFS in BRAFmut patients. In BRAFwt patients, tumor stage was independently associated with longer BMFS; ECOG Performance status (ECOG-PS), lactate dehydrogenase (LDH), and tumor stage with OS. CTLA-4+PD-1 did not result in better BMFS, PFS, or OS than PD-1 in BRAFwt patients. For BRAFmut patients, multivariate Cox regression revealed ECOG-PS, type of 1L-therapy, tumor stage, and LDH as independent prognostic factors for PFS and OS. 1L-therapy with CTLA-4+PD-1 led to longer OS than PD-1 (HR 1.97, 95% CI 1.122 to 3.455, p=0.018) or BRAF+MEK (HR 2.41, 95% CI 1.432 to 4.054, p=0.001), without PD-1 being superior to BRAF+MEK. CONCLUSIONS: In BRAFmut patients 1L-therapy with PD-1±CTLA-4 ICI resulted in a delayed and less frequent development of brain metastasis compared with BRAF+MEK TT. 1L-therapy with CTLA-4+PD-1 showed superior OS compared with PD-1 and BRAF+MEK. In BRAFwt patients, no differences in brain metastasis and survival outcomes were detected for CTLA-4+PD-1 compared with PD-1.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Cutâneas , Humanos , Antígeno CTLA-4 , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Sistema de Registros , Quinases de Proteína Quinase Ativadas por Mitógeno , Encéfalo/patologia
11.
Cancers (Basel) ; 15(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36765660

RESUMO

Although adjuvant therapies with immune checkpoint inhibitors (ICI) and BRAF/MEK inhibitors improve recurrence-free survival (RFS) in stage III melanoma patients significantly, prognostic factors are needed to identify patients with a high risk of disease recurrence. Therefore, the aim of our study was to investigate the prognostic potential of routinely collected blood parameters for stage III melanoma patients with microscopic sentinel lymph node (SLN) metastasis. Altogether, we retrospectively analyzed 138 stage III melanoma patients who were diagnosed with microscopic SLN metastasis at the skin cancer center of the University Hospital Cologne between 2011 and 2020 and who did not receive prior adjuvant therapy with ICI or BRAF/MEK-inhibitors. Univariate and multivariate Cox regression analyses, Kaplan-Meier survival analyses and receiver operating characteristic (ROC) curves were performed to assess the impact of preoperatively collected blood parameters and blood ratios on recurrence-free survival (RFS; primary endpoint) and overall survival (OS). A high neutrophil-to-lymphocyte ratio (NLR), low lymphocyte-to-monocyte ratio (LMR) and high C-reactive protein (CRP) value were significantly associated with shorter RFS in multivariate analysis. For LMR (cut-off 3.5) and for CRP (cut-off 3.0) this effect remained after dichotomization. CRP showed a stronger association with RFS than NLR or LMR, with the highest association being detected for the combination of low LMR and high CRP. Additionally, derived NLR ≥ 2.0 was significantly associated with shorter OS in multivariate analysis. In summary, our data suggest that CRP in combination with LMR should be considered as a marker for melanoma recurrence in stage III melanoma patients with microscopic SLN metastasis.

12.
Oncotarget ; 14: 14-20, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36634214

RESUMO

Overexpression of the dihydrolipoamide S-succinyltransferase (DLST) is associated with poor outcome in neuroblastoma patients and triple-negative breast cancer (TNBC) and specifically with the oxidative phosphorylation (OXPHOS) pathway. Inhibitors of OXPHOS were previously suggested as a potential therapeutic strategy for a subset of patients with high-risk neuroblastoma. Here, we tested if cell lines with DLST amplifications or high mRNA levels were associated with sensitivity to 250 drugs from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset by comparing them to cell lines without these changes. DLST-altered cell lines were more sensitive to 7 approved drugs, among these obatoclax mesylate, a BCL2 inhibitor that reduces OXPHOS in human leukemia stem cells. Moreover, several protein kinase inhibitors were identified to be efficient in cell lines with DLST amplifications or high mRNA levels, suggesting a vulnerability of DLST-altered cell lines for drugs targeting the ERK/MAPK pathway. Furthermore, increased DLST expression in cell lines with driver mutations in KRAS supported this relationship. We therefore conclude that, in addition to OXPHOS, protein kinases could be potential targets of therapy in the presence of DLST amplifications or high mRNA levels. The new drug candidates proposed here could serve in experimental testing on drug efficacy in knock-in cell lines and DLST-activated tumors.


Assuntos
Neuroblastoma , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Linhagem Celular Tumoral
13.
Pigment Cell Melanoma Res ; 36(2): 252-258, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36382970

RESUMO

Large genome-scale studies are deposited in various public sequence repositories. However, their access and analysis can be non-trivial to infrequent users. Here, we present a new database connecting whole transcriptomes with clinical data for straight-forward access and analysis of patient-specific samples. Users can perform association tests of survival and gene expression across different cohorts, identify cell-type expressions, or correlate the presence of immune cells. In summary, we present a new data hub for bench scientists to perform replication and discovery studies.


Assuntos
Melanoma , Humanos , Transcriptoma
14.
J Cancer Res Clin Oncol ; 149(9): 5539-5545, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36472769

RESUMO

PURPOSE: A wide therapeutic repertoire has become available to oncologists including radio- and chemotherapy, small molecules and monoclonal antibodies. However, drug efficacy can be limited by genetic heterogeneity. Here, we designed a webtool that facilitates the data analysis of the in vitro drug sensitivity data on 265 approved compounds from the GDSC database in association with a plethora of genetic changes documented for 1001 cell lines in the CCLE data. METHODS: The webtool computes odds ratios of drug resistance for a queried set of genetic alterations. It provides results on the efficacy of single compounds or groups of compounds assigned to cellular signaling pathways. Webtool availability: https://tools.hornlab.org/GDSC/ . RESULTS: We first replicated established associations of genetic driver mutations in BRAF, RAS genes and EGFR with drug response. We then tested the 'BRCAness' hypothesis and did not find increased sensitivity to the assayed PARP inhibitors. Analyzing specific PIK3CA mutations related to cancer and mendelian overgrowth, we found support for the described sensitivity of H1047 mutants to GSK690693 targeting the AKT pathway. Testing a co-mutated gene pair, GATA3 activation abolished PTEN-related sensitivity to PI3K/mTOR inhibition. Finally, the pharmacogenomic modifier ABCB1 was associated with olaparib resistance. CONCLUSIONS: This tool could identify potential drug candidates in the presence of custom sets of genetic changes and moreover, improve the understanding of signaling pathways. The underlying computer code can be adapted to larger drug response datasets to help structure and accommodate the increasingly large biomedical knowledge base.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Mutação , Linhagem Celular , Resistência a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
15.
Phys Rev E ; 106(4-2): 045104, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397562

RESUMO

The mechanism responsible for the damping of the large-scale, azimuthally directed jets observed at Jupiter's surface is not well known, but electromagnetic forces are suspected to play a role as the planet's electrical conductivity increases radially with depth. To isolate the jet damping process, we carry out a suite of direct numerical simulations of quasi-two-dimensional, horizontally periodic Rayleigh-Bénard convection with stress-free boundary conditions in the presence of an external, vertical magnetic field. Jets, punctuated by intermittent convective bursts, develop at Rayleigh numbers (Ra, ratio of buoyancy to diffusion) beyond 10^{5} when the magnetic field is relatively weak. Five primary flow regimes are found by varying 10^{3}≤Ra≤10^{10} and the Chandrasekhar number (Ch, ratio of Lorentz to viscosity) 0≤Ch≤10^{6}: (i) steady convection rolls, (ii) steady magneto-columns, (iii) unsteady to turbulent magneto-plumes, (iv) horizontally drifting magneto-plumes, and (v) jets with intermittent turbulent convective bursts. We parse the parameter space using transitions derived from the interaction parameter (N, ratio of Lorentz to inertia). The transition to the regime dominated by jets has the most immediate applications to the magnetic damping of Jovian jet flows, where the separation between jets and a magnetically constrained system occurs at a jet-based interaction parameter value of N_{J}≈1. We approximate the value of the Jovian interaction parameter as a function of depth, and find that the jets may brake at ≈6000 km below the surface, which is deeper than recent estimates from NASA's Juno mission. This suggests that mechanisms in addition to electromagnetic forces are likely required to fully truncate the jets.

16.
Clin Transl Med ; 12(11): e1090, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320118

RESUMO

BACKGROUND: Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS: We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS: KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS: In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.


Assuntos
Ácidos Nucleicos Livres , Melanoma , Nevo , Humanos , Biomarcadores Tumorais/genética , Melanoma/genética , Melanoma/patologia , Ácidos Nucleicos Livres/genética , Mutação , Genótipo , RNA Mensageiro
17.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36077603

RESUMO

Melanocytic neoplasms have been genetically characterized in detail during the last decade. Recurrent CTNNB1 exon 3 mutations have been recognized in the distinct group of melanocytic tumors showing deep penetrating nevus-like morphology. In addition, they have been identified in 1-2% of advanced melanoma. Performing a detailed genetic analysis of difficult-to-classify nevi and melanomas with CTNNB1 mutations, we found that benign tumors (nevi) show characteristic morphological, genetic and epigenetic traits, which distinguish them from other nevi and melanoma. Malignant CTNNB1-mutant tumors (melanomas) demonstrated a different genetic profile, instead grouping clearly with other non-CTNNB1 melanomas in methylation assays. To further evaluate the role of CTNNB1 mutations in melanoma, we assessed a large cohort of clinically sequenced melanomas, identifying 38 tumors with CTNNB1 exon 3 mutations, including recurrent S45 (n = 13, 34%), G34 (n = 5, 13%), and S27 (n = 5, 13%) mutations. Locations and histological subtype of CTNNB1-mutated melanoma varied; none were reported as showing deep penetrating nevus-like morphology. The most frequent concurrent activating mutations were BRAF V600 (n = 21, 55%) and NRAS Q61 (n = 13, 34%). In our cohort, four of seven (58%) and one of nine (11%) patients treated with targeted therapy (BRAF and MEK Inhibitors) or immune-checkpoint therapy, respectively, showed disease control (partial response or stable disease). In summary, CTNNB1 mutations are associated with a unique melanocytic tumor type in benign tumors (nevi), which can be applied in a diagnostic setting. In advanced disease, no clear characteristics distinguishing CTNNB1-mutant from other melanomas were observed; however, studies of larger, optimally prospective, cohorts are warranted.

18.
Proc Math Phys Eng Sci ; 478(2264): 20220313, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35966215

RESUMO

In magnetostrophic rotating magnetoconvection, a fluid layer heated from below and cooled from above is equidominantly influenced by the Lorentz and the Coriolis forces. Strong rotation and magnetism each act separately to suppress thermal convective instability. However, when they act in concert and are near in strength, convective onset occurs at less extreme Rayleigh numbers ( R a , thermal forcing) in the form of a stationary, large-scale, inertia-less, inviscid magnetostrophic mode. Estimates suggest that planetary interiors are in magnetostrophic balance, fostering the idea that magnetostrophic flow optimizes dynamo generation. However, it is unclear if such a mono-modal theory is realistic in turbulent geophysical settings. Donna Elbert first discovered that there is a range of Ekman ( E k , rotation) and Chandrasekhar ( C h , magnetism) numbers, in which stationary large-scale magnetostrophic and small-scale geostrophic modes coexist. We extend her work by differentiating five regimes of linear stationary rotating magnetoconvection and by deriving asymptotic solutions for the critical wavenumbers and Rayleigh numbers. Coexistence is permitted if E k < 16 / ( 27 π ) 2 and C h ≥ 27 π 2 . The most geophysically relevant regime, the Elbert range, is bounded by the Elsasser numbers 4 3 ( 4 4 π 2 E k ) 1 / 3 ≤ Λ ≤ 1 2 ( 3 4 π 2 E k ) - 1 / 3 . Laboratory and Earth's core predictions both exhibit stationary, oscillatory, and wall-attached multi-modality within the Elbert range.

19.
Nat Commun ; 13(1): 3055, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650266

RESUMO

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Assuntos
Melanoma , Monofenol Mono-Oxigenase , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia
20.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697379

RESUMO

BACKGROUND: Immune-stimulatory agents, like agonists of the innate immune receptor RIG-I, are currently tested in clinical trials as an intratumoral treatment option for patients with unresectable melanoma, aiming to enhance anti-tumor T cell responses. Switching of melanoma toward a dedifferentiated cell state has recently been linked to T cell and therapy resistance. It remains to be determined whether RIG-I agonists affect melanoma differentiation, potentially leading to T cell resistance. METHODS: Patient metastases-derived melanoma cell lines were treated with the synthetic RIG-I agonist 3pRNA, and effects on tumor cell survival, phenotype and differentiation were determined. Transcriptomic data sets from cell lines and metastases were analyzed for associations between RIG-I (DDX58) and melanoma differentiation markers and used to define signaling pathways involved in RIG-I-driven dedifferentiation. The impact of 3pRNA-induced melanoma dedifferentiation on CD8 T cell activation was studied in autologous tumor T cell models. RESULTS: RIG-I activation by 3pRNA induced apoptosis in a subpopulation of melanoma cells, while the majority of tumor cells switched into a non-proliferative cell state. Those persisters displayed a dedifferentiated cell phenotype, marked by downregulation of the melanocytic lineage transcription factor MITF and its target genes, including melanoma differentiation antigens (MDA). Transition into the MITFlow/MDAlow cell state was JAK-dependent, with some cells acquiring nerve growth factor receptor expression. MITFlow/MDAlow persisters switched back to the proliferative differentiated cell state when RIG-I signaling declined. Consistent with our in vitro findings, an association between melanoma dedifferentiation and high RIG-I (DDX58) levels was detected in transcriptomic data from patient metastases. Notably, despite their dedifferentiated cell phenotype, 3pRNA-induced MITFlow/MDAlow persisters were still efficiently targeted by autologous CD8 tumor-infiltrating T lymphocytes (TILs). CONCLUSIONS: Our results demonstrate that RIG-I signaling in melanoma cells drives a transient phenotypic switch toward a non-proliferative dedifferentiated persister cell state. Despite their dedifferentiation, those persisters are highly immunogenic and sensitive toward autologous TILs, challenging the concept of melanoma dedifferentiation as a general indicator of T cell resistance. In sum, our findings support the application of RIG-I agonists as a therapeutic tool for the generation of long-term clinical benefit in non-resectable melanoma.


Assuntos
Melanoma , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA